O 2 Dissociation on M @ Pt Core − Shell Particles for 3 d , 4 d , and 5 d Transition Metals
نویسندگان
چکیده
Density functional theory calculations are performed to investigate oxygen dissociation on 38-atom truncated octahedron platinum-based particles. This study progresses our previous work (Jennings et al. Nanoscale, 2014, 6, 1153), where it was shown that flexibility of the outer Pt shell played a crucial role in facilitating fast oxygen dissociation. In this study, the effect of forming M@Pt (M core, Pt shell) particles for a range of metal cores (M = 3d, 4d, and 5d transition metals) is considered, with respect to O2 dissociation on the Pt(111) facets. We show that forming M@ Pt particles with late transition metal cores results in favorable shell flexibility for very low O2 dissociation barriers. Conversely, alloying with early transition metals results in a more rigid Pt shell because of dominant M−Pt interactions, which prevent lowering of the dissociation barriers.
منابع مشابه
Optimizing core-shell nanoparticle catalysts with a genetic algorithm.
A genetic algorithm is used with density functional theory to investigate the catalytic properties of 38- and 79-atom bimetallic core-shell nanoparticles for the oxygen reduction reaction. Each particle is represented by a two-gene chromosome that identifies its core and shell metals. The fitness of each particle is specified by how close the d-band level of the shell is to that of the Pt(111) ...
متن کاملElectrooxidation of Formic Acid and Formaldehyde on the Fe3O4@Pt Core-Shell Nanoparticles/Carbon-Ceramic Electrode
In the present work, the electrooxidation of formic acid and formaldehyde; potentially important fuels for future fuel cells, was investigated on the Fe3O4@Pt core-shell nanoparticles/carbon-ceramic electrode (Fe3O4@Pt/CCE). The Fe3O4@Pt nanoparticles were prepared via a simple and fast chemical method and their surface morph...
متن کاملCharge redistribution in core-shell nanoparticles to promote oxygen reduction.
Bimetallic core-shell nanoparticles are a class of near-surface alloy catalyst for which there is a high degree of control over size and composition. A challenge for theory is to understand the relationship between their structure and catalytic function and provide guidelines to design new catalysts that take advantage of material properties arising at the nanoscale. In this work, we use densit...
متن کاملA Density Functional Theory Investigation of d8 Transition Metal(II) (Ni, Pd, Pt) Chloride Complexes of Some Vic-dioximes Derivatives
Herein, a theoretical study on the stability of some vic-dioxime complexes of Ni(II), Pd(II) and Pt(II) in gas and aqueous phases is reported. The DFT/M06/SDD and DFT/M06/6-31G+(d,p) levels of theory were adopted for the metal ions and for every other element respectively. Structural analyses of investigated complexes have revealed square planar geometries stabilized by two O–H⋯Cl hydrogen bond...
متن کاملUsing the Palladium as core and Platinum as shell for ORR
In this work, electrocatalyst with core-shell structure (Pd as core and Pt as shell on VulcanXC-72R) was synthesis. Not only this structure can reduce the amount of platinum but it also can increase the gas diffusion electrode (GDE) performance in cathode reaction (Oxygen Reduction Reaction or ORR) of polymer electrolyte membrane fuel cell (PEMFC). To this meaning, one series of electrocatalyst...
متن کامل